
www.manaraa.com

TECHNIA – International Journal of Computing Science and Communication Technologies, VOL. 2, NO. 1, July 2009. (ISSN 0974-3375)

394

Checkpointing Algorithms for Distributed Systems
Parveen Kumar1, Richa Setiya2, and Poonam Gahlan2

1Dept. of Computer Science, APIIT, Panipat.
2Department of Computer Sc & Engg, Israna, Panipat

[swastikaarya83@gmail.com]

Abstract:- Checkpoint is defined as a designated place in a
program at which normal processing is interrupted
specifically to preserve the status information necessary to
allow resumption of processing at a later time. Checkpointing
is the process of saving the status information. This paper
presents the review of the algorithms which have been
reported in the literature for checkpointing
parallel/distributed systems.

Keywords: Checkpointing algorithms; parallel &
distributed computing; shared memory systems; rollback
recovery; fault-tolerant systems.

1. INTRODUCTION

Systems with more than one processor are known as
multiprocessor systems. As the number of processors
increase the probability of any one processor failing is high.
Checkpointing, however, is more difficult in
multiprocessors as compared to uniprocessors. This is due
to the fact that in multiprocessors there are multiple streams
of execution and there is no global clock. The absence of a
global clock makes it difficult to initiate checkpoints in all
the streams of execution at the same time instance. We have
to pick one checkpoint from each stream in such a way that
the set of these checkpoints are “concurrent”. The concept
of concurrency is defined based on the “happens before”
relation defined by Lamport [6].

A distributed system is a collection of processes that
communicate with each other by exchanging messages. A
mobile distributed computing system is a distributed system
where some of the processes are running on mobile hosts
(MHs). The term “mobile” implies able to move while
retaining its network connections. A host that can move
while retaining its network connections is an

The transparent checkpointing techniques do not require
user interaction and can be classified into following
categories:
• Uncoordinated Checkpointing
• Coordinated Checkpointing
• Quasi-Synchronous or Communication induced
Checkpointing
• Message Logging based Checkpointing

1.1 Uncoordinated Checkpointing

In uncoordinated or independent checkpointing, processes
do not coordinate their checkpointing activity and each
process records its local checkpoint independently.It
eliminates coordination overhead all together and forms a
consistent global state on recovery after a fault [12]. After a
failure, consistent global checkpoint is established by
tracking the dependencies. It may require cascaded
rollbacks that may lead to the initial state due to domino-
effect [13]. It requires multiple checkpoints to be saved for
each process and periodically invokes garbage collection
algorithm to reclaim the checkpoints that are no longer
needed.

Figure 2. Domino-effect

The main disadvantage of this approach is the domino-
effect [Figure 2]. In this example, processes P1 and P2 have
independently taken a sequence of checkpoints. The
interleaving of messages and checkpoints leave no
consistent set of checkpoints for P1 and P2, except the
initial one at {C10, C20). Consequently, after P1 fails, both
P1 and P2 must roll back to the beginning of the
computation [2]. It should be noted that global state {C11,
C21} is inconsistent due to orphan message m1. Similarly,
global state {C12, C22} is inconsistent due to orphan
message m4.
1.2 Coordinated Checkpointing
In coordinated or synchronous checkpointing, processes
take checkpoints in such manner that the resulting global
state is consistent. Mostly it follows two-phase commit
structure [13],[14],[15]. In the first phase, processes take
tentative checkpoints and in the second phase, these are
made permanent. The main
advantage is that only one permanent checkpoint and at
most one tentative checkpoint is required to be stored. In

www.manaraa.com

Kumar et al.: Checkpointing Algorithms for Distributed Systems

395

case of a fault, processes rollback to last checkpointed state.
A permanent checkpoint can not be undone. It guarantees
that the computation needed to reach the checkpointed state
will not be repeated. A tentative checkpoint, however, can
be undone or changed to be a permanent checkpoint. The
coordinated checkpointing protocols can be classified into
two types: blocking and non-blocking. In blocking
algorithms, as mentioned above, some blocking of
processes takes place during checkpointing [13]. In non-
blocking algorithms, no blocking of processes is required
for checkpointing [14],[15].

1.3 Quasi-synchronous or communication induced
checkpointing
Communication-induced checkpointing avoids the domino-
effect without requiring all checkpoints to be coordinated
[19]. In these protocols, processes take two kinds of
checkpoints, local and forced. Local checkpoints can be
taken independently, while forced checkpoints are taken to
guarantee the eventual progress of the recovery line and to
minimize useless checkpoints .These protocols do no
exchange any special coordination messages to determine
when forced checkpoints should be taken. But, they
piggyback protocol specific information[generally
checkpoint sequence numbers] on each application
message; the receiver then uses this information to decide if
it should take a forced checkpoint.

1.4 Message logging based checkpointing protocols
Message-logging protocols (for example [16],[17],[18], are
popular for building systems that can tolerate process crash
failures. Message logging and checkpointing can be used to
provide fault tolerance in distributed systems in which all
inter-process communication is through messages. Each
message received by a process is saved in message log on
stable storage. No coordination is required between the
checkpointing of different processes or between message
logging and checkpointing. When a process crashes, a new
process is created in its place. The new process is given the
appropriate recorded local state, and then the logged
messages are replayed in the order the process originally
received them. All message logging protocols require that
once a crashed process recovers, its state needs to be
consistent with the states of the other processes [15]. Thus,
message- logging protocols guarantee that upon recovery,
no process is an orphan.

2. CHECKPOINTING ALGORITMS FOR MESSAGE-
PASSING SYSTEMS

Chandy & Lamport (1985) proposed a global snapshot
algorithm for distributed systems. We observe that every
checkpointing algorithm proposed for message-passing
(MP)systems uses Chandy & Lamport's (1985) algorithm as

the base. We show that most of the algorithms proposed in
the literature for checkpointing MP systems may be derived
by relaxing various assumptions made by them and by
modifying the way each step is carried out. As per Chandy
and Lamport's model, a distributed system consists of a
finite set of processors and a finite set of channels[6].

2.1 Algorithm: The global state is constructed by
coordinating all the processors and logging the channel
states at the time of checkpointing. Special messages called
markers are used for coordination and for identifying the
messages originating at different checkpoint intervals. The
algorithm is initiated by a centralised node. The steps
followed after a checkpoint initiation, however, are the
same in all the nodes except that a centralised node initiates
checkpoint on its own and the other nodes initiate
checkpoints as soon as they receive a marker. The steps are
as below.
(1) Save the local context in stable storage;
(2) for i =1 to all outgoing channels do Send markers along
channel i;
(3) continue regular computation;
(4) for i = 1 to all incoming channels do Save incoming
messages in channel i until a marker is received along that
channel[6].

2.2 Modifications of Chandy and Lamport's algorithm

Each step of the CL algorithm can be modified to
accommodate some improvements in the basic global
snapshot algorithm. In step one, a node saves its context in
stable storage. The overhead associated with step one is
context-saving overhead. The objective of saving the
context in stable storage is to ensure its availability after a
node failure. The overhead of context saving is proportional
to the size of the context and the time taken to access the
stable storage. Context-saving overhead can thus be
reduced by (a) minimising the context size, and (b)
overlapping context saving with computation.
In step two, markers are sent along all the outgoing
channels. The purpose of a marker is
(1) to inform the receiving node that a new checkpoint has
to be taken;
(2) to separate the messages of the previous and the current
checkpoint interval.

At the time of checkpointing the centralised node informs
all the nodes to initiate checkpoints through this marker
message. CL algorithm sends markers along every channel
to inform the nodes to log all transit messages onto stable
storage .Checkpointing can be coordinated without using
markers by sending with regular messages a header which
has the checkpoint interval number in which the message
originated. The simplest would be a one-bit header, which
toggles between one and zero indicating the consecutive
checkpoint intervals[21]. Note that the marker overhead has

www.manaraa.com

TECHNIA – International Journal of Computing Science and Communication Technologies, VOL. 2, NO. 1, July 2009. (ISSN 0974-3375)

396

now become header overhead; overhead due to appending
headers with regular messages. When a message is received
with a header value different from that of the receiving
node, either a new checkpoint is initiated or the message is
logged depending on whether the message is an orphan
message or a missing message. This one-bit header
complicates checkpoint initiation when out-of-sequence
messages are encountered. Message sequence numbers
along with checkpoint interval number in the message
header can help in controlling the number of checkpoints
along with logging of missing messages and elimination of
orphan messages[13]. The cost of this approach is the size
of the header for maintaining the message sequence
numbers and checkpoint interval number. When nodes
initiate checkpoints on their own, it is called distributed
checkpointing. Independent checkpointing eliminates
coordination overhead at runtime and forms a consistent
global state only when it is needed, i.e only at recovery
time.When there is no coordination, nodes should be able to
initiate checkpoints independently on their own. The
advantages of this independent checkpointing are that 1)
coordination and thereby the use of markers is eliminated;
.2) nodes can initiate checkpoints at their convenience
without being forced to initiate by the receipt of marker
messages. The disadvantage is the maintenance of multiple
checkpoints and message logs.Yet another mode of
coordination is to synchronise the clocks and initiate the
checkpoints approximately at the same time in all the nodes
[7]. To account for the differences in the clock values,
message sending can either be delayed during
checkpointing or headers can be used with messages. Step
three of the CL algorithm allows regular processing to
proceed without waiting for the channel state recording and
consequently the checkpoint operation to be completed.
This is a good way of reducing the intrusion of a
checkpointing algorithm but a better approach would be to
overlap the context-saving process with regular
computation. Step four of CL algorithm logs those
messages which cannot be generated at recovery time.The
purpose served by markers in identifying these messages
can also be fulfilled by headers and this was mentioned
while discussing step two.

3. CONCLUSION

 Coordinated checkpointing generally simplifies recovery
and garbage collection, and yields good performance in
practice. At the other end of the spectrum,uncoordinated
checkpointing does not require the processes to coordinate
their checkpoints, but it suffers from potential domino
effect, complicates recovery, and still requires coordination
to perform output commit or garbage collection. Between
these two ends are communication-induced checkpointing
schemes that depend on the communication patterns of the
applications to trigger checkpoints. These schemes do not
suffer from the domino effect and do not require

coordination. Recent studies, however, have shown that the
non-deterministic nature of these protocols complicates
garbage collection and degrades performance.Causal
logging reduces the overhead while still preserving the
properties of fast output commit and orphan-free recovery.

REFERENCES

[1] Koo R, Toueg S “ Checkpointing and rollback recovery for distributed
systems”.IEEE Trans.Software Eng. SE-13: 23-31,1987
[2] Zomaya A Y H “ Parallel and distributed computing handbook” (New
York: McGraw-Hill),1996
[3] Siewiorek D P, Swarz S “The theory and practice of reliable system
design” (Cambridge, MA: Digital Press),1982
[4] Li K, Naughton J F, Plank S “ Checkpointing multicomputer
applications”. Proc. IEEE Conf. on Reliable Distributed Syst. pp 2-
11,1991
[5] Wang Y-M, Chung P-Y, Lin I-J, Fuchs W K “Checkpoint space
reclamation for uncoordinated checkpointing in message passing systems”.
IEEE Trans. Parallel Distributed Syst. 6: 546-554,1995
[6] Chandy K M, Ramamoorthy C V “Rollback and recovery strategies
for computer programs”. IEEE Trans. Comput. C-21: 546-556,1972
[7] Cristian F, Jahanian F “ A timestamp-based checkpointing protocol for
long-lived distributed computations”. Proc. IEEE Conf. on Reliable
Distributed Syst. pp 12-20,1991
[8] Tong Z, Kain R Y, Tsai W T “ Rollback recovery in distributed
systems using loosely synchronized clocks”.IEEE Trans. Parallel
Distributed Syst. 3: 246-251,1992
[9] Acharya A. and Badrinath B. R.,“Checkpointing Distributed
Applications on Mobile Computers,” Proceedings of the 3rd International
Conference on Parallel and Distributed Information Systems, pp. 73-80,
September 1994.
[10] Acharya A., “Structuring Distributed Algorithms and Services for
networks with Mobile Hosts”, Ph.D. Thesis, Rutgers University, 1995.
[11] Badrinath B. R, Acharya A., T. Imielinski “Structuring Distributed
Algorithms for Mobile Hosts”, Proc. 14th Int. Conf. Distributed
Computing Systems, June1994.
[12] Bhargava B. and Lian S. R., “Independent Checkpointing and
Concurrent Rollback for Recovery in Distributed Systems-An Optimistic
Approach,” Proceedings of 17th IEEE Symposium on Reliable Distributed
Systems, pp. 3-12, 1988.
[13] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for
Distributed Systems,” IEEE Trans. on Software Engineering, vol. 13, no.
1, pp. 23-31,January 1987.
[14] Chandy K. M. and Lamport L., “Distributed Snapshots: Determining
Global State of Distributed Systems,” ACM Transaction on Computing
Systems,
vol. 3, No. 1, pp. 63-75, February 1985.
[15] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The Performance
of Consistent Checkpointing,” Proceedings of the 11th Symposium on
Reliable Distributed Systems,pp. 39-47, October 1992.
[16] Alvisi, Lorenzo and Marzullo, Keith,“Message Logging: Pessimistic,
Optimistic, Causal, and Optimal”, IEEE Transactions on Software
Engineering, Vol. 24, No. 2, February 1998, pp. 149-159.
[17] L. Alvisi, Hoppe, B., Marzullo, K.,“Nonblocking and Orphan-Free
message Logging Protocol,” Proc. of 23rd Fault Tolerant Computing
Symp., pp. 145-154,
June 1993.

www.manaraa.com

Kumar et al.: Checkpointing Algorithms for Distributed Systems

397

[18] L. Alvisi,“ Understanding the Message Logging Paradigm for
Masking Process Crashes,“ Ph.D. Thesis, Cornell Univ., Dept. of
Computer Science, Jan. 1996. Available as Technical Report TR-96-1577.
of the International Symposium on Fault-Tolerant-Computing Systems, pp.
68-77,June 1997.
[19] Manivannan D. and Singhal M., “Quasi- Synchronous Checkpointing:
Models, Characterization, and Classification,” IEEE Trans. Parallel and
Distributed Systems, vol. 10, No. 7, pp. 703-713, July 1999.
[20] Silva L, Silva J “Global checkpointing for distributed programs”.
Proc. IEEE 11th Symp. On Reliable Distributed Syst. pp 155-162,1992
[21] Lai T H, Yang T H “On distributed snapshots”.Inf. Process. Lett. 25:
153-158,1987
[22] Leu P-J, Bhargava B “Concurrent robust checkpointing and recovery
in distributed systems”.Proc. Int. Conf. on Data Engineering pp 154-
163,1988

[23] Ahmed R E, Frazier R C, Marinos P N “Cache aided rollback error
recovery (CARER) algorithms for shared memory multiprocessor
systems”. Proc. IEEE 20th Int. Symp. on Fault Tolerant Computing pp 82-
88,1990
[24] Wu K-L, Fuchs W K, Patel J H “Cache based error recovery for
shared memory multiprocessor systems”. Proc. Int. Conf. on Parallel
Processing pp I159-I166,1989
 [25] Tam V-O, Hsu M “ Fast recovery in distributed shared virtual
memory systems”. Proc. IEEE 10th Int. Conf. on Distributed Computing
Syst. pp 38-45,1990
[26] Kalaiselvi S, Rajaraman V “Task graph based checkpointing in
parallel/distributed systems”.J.Parallel Distributed Comput.
(submitted),2000
 [27] Manivannan D, Singhal M “A low-overhead recovery technique
using quasi synchronous checkpointing”. Proc. IEEE Int. Conf. on
Distributed Computing Syst. pp 10

0-107,1996

